"""不动产土地数据处理 """ # 导入必要的库 import re # 用于正则表达式处理 from datetime import datetime # 用于日期时间操作 from dateutil.relativedelta import relativedelta # 用于相对日期计算 from loguru import logger # 日志记录工具 import pandas as pd # 数据处理库 import psycopg # PostgreSQL数据库连接库 import subprocess import paramiko # 配置日志记录器,将日志写入文件a.log logger.add(sink='a.log') ssh_hostname = '172.16.107.4' # 定义远程主机地址 ssh_port = 22 # 定义SSH服务的端口号 ssh_username = 'app' # 定义登录远程主机的用户名 ssh_password = '(l4w0ST_' # 定义登录远程主机的密码 # 服务器文件夹路径 remote_dir_path = '/data/history/house/land/' # 数据库连接信息 db_host = "172.16.107.5" # 数据库主机地址 db_port = 5432 # 数据库端口号 db_username = "finance" # 数据库用户名 db_password = "Finance@unicom23" # 数据库密码 dbname = "financialdb" # 数据库名称 conn_info = f"host='{db_host}' port={db_port} user='{db_username}' password='{db_password}' dbname='{dbname}'" # 获取当前日期,并计算上个月的第一天 today = datetime.today() start_date = today - relativedelta(months=1, day=1) year_month = start_date.strftime('%Y%m') # 数据文件路径 input_path = 'data.xlsx' # 输出文件路径 output_path = 'output.csv' def data_process(): org_map = {} # 组织机构ID到组织机构信息的映射 third_org_list_map = {} # 二级组织机构ID到其三级子组织列表的映射 area_map = {} # 区域ID到区域信息的映射 districts_list_map = {} # 城市ID到其区县列表的映射 # 连接到PostgreSQL数据库 with psycopg.connect( conninfo=conn_info, row_factory=psycopg.rows.dict_row # 使用字典格式返回查询结果 ) as conn: with conn.cursor() as curs: # 查询所有一级组织机构(grade=1) sql = """ select * from common.organization where grade = 1 """ logger.info(f"sql: {sql}") # 记录SQL语句到日志 curs.execute(sql) second_orgs = curs.fetchall() # 获取所有一级组织机构 for x in second_orgs: third_org_list_map[x['id']] = [] # 初始化二级组织机构的三级子组织列表 # 查询所有组织机构 sql = """ select * from common.organization """ logger.info(f"sql: {sql}") curs.execute(sql) orgs = curs.fetchall() for x in orgs: if x['parent_id'] in third_org_list_map: # 如果该组织的父级是二级组织,则将其加入对应的三级子组织列表 third_org_list_map[x['parent_id']].append(x) org_map[x['id']] = x # 将组织机构信息存入全局映射 # 查询所有一级区域(area_grade=1) sql = """ select * from common.area where area_grade = 1 order by area_id """ logger.info(f"sql: {sql}") curs.execute(sql) cities = curs.fetchall() # 获取所有一级区域(城市) for x in cities: districts_list_map[x['area_id']] = [] # 初始化城市的区县列表 # 查询所有区域 sql = """ select * from common.area """ logger.info(f"sql: {sql}") curs.execute(sql) areas = curs.fetchall() for x in areas: if x['parent_id'] in districts_list_map: # 如果该区域的父级是城市,则将其加入对应城市的区县列表 districts_list_map[x['parent_id']].append(x) area_map[x['area_id']] = x # 将区域信息存入全局映射 # 读取Excel文件中的数据 df = pd.read_excel(io=input_path) # 删除字符串字段中的空白字符 df = df.map(lambda x: re.sub(r'\s+', '', x) if type(x) is str else x) # 去重:根据“土地ID”列去重,保留最后一条记录 df.drop_duplicates(subset=['土地ID'], keep='last', inplace=True) # 定义函数:获取二级组织机构编码 def get_area_no(x): second_unit = x['资产所属单位(二级)'] third_unit = x['资产所属单位(三级)'] if '长途通信传输局' == second_unit: return '-11' if '保定' in second_unit and ('雄县' in third_unit or '容城' in third_unit or '安新' in third_unit): return '782' for second_org in second_orgs: area_name = second_org['name'] area_no = second_org['id'] if area_name in second_unit: return area_no return '-12' # 应用函数,生成“二级组织机构编码”列 df['二级组织机构编码'] = df.apply(get_area_no, axis=1) # 定义函数:获取二级组织机构名称 def get_area_name(x): area_no = x['二级组织机构编码'] second_org = org_map[area_no] area_name = second_org['name'] return area_name # 应用函数,生成“二级组织机构名称”列 df['二级组织机构名称'] = df.apply(get_area_name, axis=1) # 定义函数:获取三级组织机构编码 def get_city_no(x): third_unit = x['资产所属单位(三级)'] area_name = x['二级组织机构名称'] area_no = x['二级组织机构编码'] if area_name == '石家庄': if '矿区' in third_unit: return 'D0130185' if '井陉' in third_unit: return 'D0130121' if area_name == '秦皇岛': if '北戴河新区' in third_unit: return 'D0130185' if '北戴河' in third_unit: return 'D0130304' if area_name == '唐山': if '滦县' in third_unit: return 'D0130223' if '高新技术开发区' in third_unit: return 'D0130205' if area_name == '邢台': if '内丘' in third_unit: return 'D0130523' if '任泽' in third_unit: return 'D0130526' if area_name == '邯郸': if '峰峰' in third_unit: return 'D0130406' if area_name == '省机动局': if '沧州' in third_unit: return 'HECS180' if '唐山' in third_unit: return 'HECS181' if '秦皇岛' in third_unit: return 'HECS182' if '廊坊' in third_unit: return 'HECS183' if '张家口' in third_unit: return 'HECS184' if '邢台' in third_unit: return 'HECS185' if '邯郸' in third_unit: return 'HECS186' if '保定' in third_unit: return 'HECS187' if '石家庄' in third_unit: return 'HECS188' if '承德' in third_unit: return 'HECS189' if '衡水' in third_unit: return 'HECS720' if '雄安' in third_unit: return 'HECS728' return 'HECS018' if '雄安' == area_name: third_unit = third_unit.replace('雄安新区', '') third_org_list = third_org_list_map[area_no] for third_org in third_org_list: city_name = third_org['name'] if city_name in third_unit: return third_org['id'] if '沧州' == area_name: return 'D0130911' if '唐山' == area_name: return 'D0130202' if '秦皇岛' == area_name: return 'D0130302' if '廊坊' == area_name: return 'D0131000' if '张家口' == area_name: return 'D0130701' if '邢台' == area_name: return 'D0130502' if '邯郸' == area_name: return 'D0130402' if '保定' == area_name: return 'D0130601' if '石家庄' == area_name: return 'D0130186' if '承德' == area_name: return 'D0130801' if '衡水' == area_name: return 'D0133001' if '雄安' == area_name: return 'D0130830' return 'HE001' # 应用函数,生成“三级组织机构编码”列 df['三级组织机构编码'] = df.apply(get_city_no, axis=1) # 定义函数:获取三级组织机构名称 def get_city_name(x): city_no = x['三级组织机构编码'] third_org = org_map[city_no] city_name = third_org['name'] return city_name # 应用函数,生成“三级组织机构名称”列 df['三级组织机构名称'] = df.apply(get_city_name, axis=1) # 定义函数:获取城市ID def get_city_id(x): address = x['标准地址'] second_unit = x['资产所属单位(二级)'] third_unit = x['资产所属单位(三级)'] if '雄安' in address or ('保定' in address and ('雄县' in address or '容城' in address or '安新' in address)): return '133100' for city in cities: area_name = city['short_name'] area_id = city['area_id'] if area_name in second_unit: return area_id if area_name in third_unit: return area_id if area_name in address: return area_id return '' # 应用函数,生成“city_id”列 df['city_id'] = df.apply(get_city_id, axis=1) # 定义函数:获取城市名称 def get_city(x): city_id = x['city_id'] area = area_map.get(city_id) if pd.notna(area): city = area['area_name'] return city return '' # 应用函数,生成“city”列 df['city'] = df.apply(get_city, axis=1) # 定义函数:获取区县ID def get_district_id(x): address = x['标准地址'] city = x['city'] city_id = x['city_id'] if pd.isna(city) or pd.isna(address): return '' if city == '石家庄': if '矿区' in address: return '130107' if '井陉' in address: return '130121' if city == '唐山': if '滦县' in address: return '130284' if city == '邢台': if '内邱' in address: return '130523' if '任县' in address: return '130505' if city == '雄安': address = address.replace('雄安新区', '') districts = districts_list_map.get(city_id) if not districts: return '' for district in districts: district_name = district['short_name'] if district_name in address: return district['area_id'] return '' # 应用函数,生成“district_id”列 df['district_id'] = df.apply(get_district_id, axis=1) # 定义函数:获取区县名称 def get_district(x): district_id = x['district_id'] area = area_map.get(district_id) if pd.notna(area): district = area['area_name'] return district return '' # 应用函数,生成“district”列 df['district'] = df.apply(get_district, axis=1) # 在DataFrame中插入“年月”列 df.insert(0, '年月', year_month) # 打印DataFrame的基本信息 print(df.info()) # 将处理后的数据保存为CSV文件 df.to_csv( path_or_buf=output_path, index=False, header=[ 'year_month', 'first_unit', 'second_unit', 'third_unit', 'land_name', 'land_id', 'land_ownership', 'use_right_type', 'land_use', 'acquisition_date', 'idle_start_date', 'site_name', 'site_id', 'address', 'investor', 'management_level', 'ownership_status', 'usage_status', 'total_land_area', 'land_area_self_use', 'land_area_idle', 'land_area_rent', 'land_area_unusable', 'has_land_deed', 'no_land_deed_reason', 'land_preservation_risk', 'open_space', 'courtyard', 'unrelated_assets', 'assets_num', 'assets_tag_num', 'responsible_department', 'person_in_charge', 'lng_jt', 'lat_jt', 'property_owner', 'special_specification', 'area_no', 'area_name', 'city_no', 'city_name', 'city_id', 'city', 'district_id', 'district' ], encoding='utf-8-sig' # 确保中文字符不会乱码 ) def data_import(): # 定义 PowerShell 脚本的路径 script_path = r"../../copy.ps1" # 目标表和文件信息 table = "house.land_month" # 数据库目标表名 # 表字段列名,用于指定导入数据的列顺序 columns = "year_month,first_unit,second_unit,third_unit,land_name,land_id,land_ownership,use_right_type,land_use,acquisition_date,idle_start_date,site_name,site_id,address,investor,management_level,ownership_status,usage_status,total_land_area,land_area_self_use,land_area_idle,land_area_rent,land_area_unusable,has_land_deed,no_land_deed_reason,land_preservation_risk,open_space,courtyard,unrelated_assets,assets_num,assets_tag_num,responsible_department,person_in_charge,lng_jt,lat_jt,property_owner,special_specification,area_no,area_name,city_no,city_name,city_id,city,district_id,district" # 构造执行 PowerShell 脚本的命令 command = f"powershell -File {script_path} -db_host {db_host} -db_port {db_port} -db_username {db_username} -db_password {db_password} -dbname {dbname} -table {table} -filename {output_path} -columns {columns}" # 打印生成的命令,方便调试和日志记录 logger.info("command: {}", command) # 使用 subprocess 模块运行 PowerShell 命令,并捕获输出 completed_process = subprocess.run( command, # 执行的命令 check=False, # 如果命令执行失败,不抛出异常 text=True, # 将输出作为字符串处理 capture_output=True, # 捕获标准输出和标准错误 ) # 打印命令执行的结果,包括返回码、标准输出和标准错误 logger.info("导入结果:\n{}\n{}\n{}", completed_process.returncode, completed_process.stdout, completed_process.stderr) # 定义正则表达式,用于匹配标准输出中的 COPY 结果 p = re.compile(r"^(COPY) (\d+)$") count = None # 初始化计数变量 matcher = p.match(completed_process.stdout) # 匹配标准输出中的 COPY 结果 if matcher: count = int(matcher.group(2)) # 提取导入的数据行数 # 如果没有成功提取到导入数据的行数,抛出运行时异常 if count is None: raise RuntimeError("导入数据失败") def upload_file(): remote_path = f'{remote_dir_path}{year_month}.xlsx' # 定义远程主机的目标文件路径 # 使用paramiko.SSHClient创建一个SSH客户端对象,并通过with语句管理其上下文 with paramiko.SSHClient() as ssh: # 设置自动添加主机密钥策略,避免因未知主机密钥导致连接失败 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接到远程主机,传入主机地址、端口、用户名和密码 ssh.connect(ssh_hostname, port=ssh_port, username=ssh_username, password=ssh_password) # 执行远程命令,创建远程目录(如果不存在) ssh.exec_command(f'mkdir -p {remote_dir_path}') # 打开SFTP会话,用于文件传输,并通过with语句管理其上下文 with ssh.open_sftp() as sftp: # 记录日志,提示即将上传的本地文件和远程目标路径 logger.info("upload {} to {}", input_path, remote_path) # 使用SFTP的put方法将本地文件上传到远程主机 sftp.put(input_path, remote_path) # 记录日志,提示文件已成功上传 logger.info("uploaded {}", input_path) def data_update(): with psycopg.connect( conninfo=conn_info, ) as conn: with conn.cursor() as curs: # 更新局址编号 sql = f""" update house.land_month a set site_num = b.site_num from house.site_month b where a.site_id = b.site_id and a.year_month = b.year_month and a.year_month = {year_month} """ logger.info(f"sql: {sql}") curs.execute(sql) logger.info(f"update {curs.rowcount}") data_process() data_import() upload_file() data_update()