"""不动产局址数据处理 """ import re from datetime import datetime from dateutil.relativedelta import relativedelta from loguru import logger import pandas as pd import psycopg import subprocess import paramiko # 配置日志记录器,将日志写入文件a.log logger.add(sink='a.log') ssh_hostname = '172.16.107.4' # 定义远程主机地址 ssh_port = 22 # 定义SSH服务的端口号 ssh_username = 'app' # 定义登录远程主机的用户名 ssh_password = '(l4w0ST_' # 定义登录远程主机的密码 # 服务器文件夹路径 remote_dir_path = '/data/history/house/site/' # 数据库连接信息 db_host = "172.16.107.5" # 数据库主机地址 db_port = 5432 # 数据库端口号 db_username = "finance" # 数据库用户名 db_password = "Finance@unicom23" # 数据库密码 dbname = "financialdb" # 数据库名称 conn_info = f"host='{db_host}' port={db_port} user='{db_username}' password='{db_password}' dbname='{dbname}'" # 获取当前日期,并计算上个月的第一天 today = datetime.today() start_date = today - relativedelta(months=1, day=1) year_month = start_date.strftime('%Y%m') # 数据文件路径 input_path = 'data.xlsx' # 输出文件路径 output_path = 'output.csv' def data_process(): # 定义全局字典变量,用于存储组织和区域的映射关系 org_map = {} third_org_list_map = {} area_map = {} districts_list_map = {} # 使用 psycopg 连接 PostgreSQL 数据库 with psycopg.connect( conninfo=conn_info, row_factory=psycopg.rows.dict_row # 使用字典格式返回查询结果 ) as conn: with conn.cursor() as curs: # 查询 grade=1 的二级组织信息 sql = """ select * from common.organization where grade = 1 """ logger.info(f"sql: {sql}") curs.execute(sql) second_orgs = curs.fetchall() # 初始化 third_org_list_map,key 为二级组织的 id,value 为空列表 for x in second_orgs: third_org_list_map[x['id']] = [] # 查询所有组织信息 sql = """ select * from common.organization """ logger.info(f"sql: {sql}") curs.execute(sql) orgs = curs.fetchall() # 将组织信息填充到 third_org_list_map 和 org_map 中 for x in orgs: if x['parent_id'] in third_org_list_map: third_org_list_map[x['parent_id']].append(x) org_map[x['id']] = x # 查询 area_grade=1 的一级区域信息 sql = """ select * from common.area where area_grade = 1 order by area_id """ logger.info(f"sql: {sql}") curs.execute(sql) cities = curs.fetchall() # 初始化 districts_list_map,key 为一级区域的 area_id,value 为空列表 for x in cities: districts_list_map[x['area_id']] = [] # 查询所有区域信息 sql = """ select * from common.area """ logger.info(f"sql: {sql}") curs.execute(sql) areas = curs.fetchall() # 将区域信息填充到 districts_list_map 和 area_map 中 for x in areas: if x['parent_id'] in districts_list_map: districts_list_map[x['parent_id']].append(x) area_map[x['area_id']] = x # 读取 Excel 文件数据 df = pd.read_excel(io=input_path) # 删除字符串类型的列中的空白字符 df = df.map(lambda x: re.sub(r'\s+', '', x) if type(x) is str else x) # 删除重复行,基于 '局址ID' 列,保留最后一行 df.drop_duplicates(subset=['局址ID'], keep='last', inplace=True) def get_area_no(x): """ 获取二级组织机构编码 """ second_unit = x['资产所属单位(二级)'] third_unit = x['资产所属单位(三级)'] if '河北' == second_unit: return '-12' if '长途通信传输局' == second_unit: return '-11' if '保定' in second_unit and ('雄县' in third_unit or '容城' in third_unit or '安新' in third_unit): return '782' for second_org in second_orgs: area_name = second_org['name'] area_no = second_org['id'] if area_name in second_unit: return area_no raise RuntimeError(f'二级组织机构编码匹配失败: {second_unit}') df['二级组织机构编码'] = df.apply(get_area_no, axis=1) def get_area_name(x): """ 根据二级组织机构编码获取二级组织机构名称 """ area_no = x['二级组织机构编码'] second_org = org_map[area_no] area_name = second_org['name'] return area_name df['二级组织机构名称'] = df.apply(get_area_name, axis=1) def get_city_no(x): """ 获取三级组织机构编码 """ third_unit = x['资产所属单位(三级)'] area_name = x['二级组织机构名称'] area_no = x['二级组织机构编码'] if area_name == '石家庄': if '矿区' in third_unit: return 'D0130185' if '井陉' in third_unit: return 'D0130121' if area_name == '秦皇岛': if '北戴河新区' in third_unit: return 'D0130185' if '北戴河' in third_unit: return 'D0130304' if area_name == '唐山': if '滦县' in third_unit: return 'D0130223' if '高新技术开发区' in third_unit: return 'D0130205' if area_name == '邢台': if '内丘' in third_unit: return 'D0130523' if '任泽' in third_unit: return 'D0130526' if area_name == '邯郸': if '峰峰' in third_unit: return 'D0130406' if area_name == '省机动局': if '沧州' in third_unit: return 'HECS180' if '唐山' in third_unit: return 'HECS181' if '秦皇岛' in third_unit: return 'HECS182' if '廊坊' in third_unit: return 'HECS183' if '张家口' in third_unit: return 'HECS184' if '邢台' in third_unit: return 'HECS185' if '邯郸' in third_unit: return 'HECS186' if '保定' in third_unit: return 'HECS187' if '石家庄' in third_unit: return 'HECS188' if '承德' in third_unit: return 'HECS189' if '衡水' in third_unit: return 'HECS720' if '雄安' in third_unit: return 'HECS728' return 'HECS018' if '雄安' == area_name: third_unit = third_unit.replace('雄安新区', '') third_org_list = third_org_list_map[area_no] for third_org in third_org_list: city_name = third_org['name'] if city_name in third_unit: return third_org['id'] if '沧州' == area_name: return 'D0130911' if '唐山' == area_name: return 'D0130202' if '秦皇岛' == area_name: return 'D0130302' if '廊坊' == area_name: return 'D0131000' if '张家口' == area_name: return 'D0130701' if '邢台' == area_name: return 'D0130502' if '邯郸' == area_name: return 'D0130402' if '保定' == area_name: return 'D0130601' if '石家庄' == area_name: return 'D0130186' if '承德' == area_name: return 'D0130801' if '衡水' == area_name: return 'D0133001' if '雄安' == area_name: return 'D0130830' return 'HE001' df['三级组织机构编码'] = df.apply(get_city_no, axis=1) def get_city_name(x): """ 根据三级组织机构编码获取三级组织机构名称 """ city_no = x['三级组织机构编码'] third_org = org_map[city_no] city_name = third_org['name'] return city_name df['三级组织机构名称'] = df.apply(get_city_name, axis=1) def get_city_id(x): """ 根据标准地址、资产所属单位(二级、三级)获取城市 ID """ address = x['标准地址'] second_unit = x['资产所属单位(二级)'] third_unit = x['资产所属单位(三级)'] if '雄安' in address or ('保定' in address and ('雄县' in address or '容城' in address or '安新' in address)): return '133100' for city in cities: area_name = city['short_name'] area_id = city['area_id'] if area_name in second_unit: return area_id if area_name in third_unit: return area_id if area_name in address: return area_id return '' df['city_id'] = df.apply(get_city_id, axis=1) def get_city(x): """ 根据城市 ID 获取城市名称 """ city_id = x['city_id'] area = area_map.get(city_id) if pd.notna(area): city = area['area_name'] return city return '' df['city'] = df.apply(get_city, axis=1) def get_district_id(x): """ 根据标准地址、城市名称和城市 ID 获取区县 ID """ address = x['标准地址'] city = x['city'] city_id = x['city_id'] if pd.isna(city) or pd.isna(address): return '' if city == '石家庄': if '矿区' in address: return '130107' if '井陉' in address: return '130121' if city == '唐山': if '滦县' in address: return '130284' if city == '邢台': if '内邱' in address: return '130523' if '任县' in address: return '130505' if city == '雄安': address = address.replace('雄安新区', '') districts = districts_list_map.get(city_id) if not districts: return '' for district in districts: district_name = district['short_name'] if district_name in address: return district['area_id'] return '' df['district_id'] = df.apply(get_district_id, axis=1) def get_district(x): """ 根据区县 ID 获取区县名称 """ district_id = x['district_id'] area = area_map.get(district_id) if pd.notna(area): district = area['area_name'] return district return '' df['district'] = df.apply(get_district, axis=1) # 在 DataFrame 中插入 '年月' 列 df.insert(0, '年月', year_month) # 打印 DataFrame 的基本信息 print(df.info()) # 将处理后的数据保存为 CSV 文件 df.to_csv(path_or_buf=output_path, index=False, header=['year_month', 'site_id', 'first_unit', 'second_unit', 'third_unit', 'site_num', 'site_name', 'address', 'city_level', 'city_region', 'area_sector', 'has_land', 'area_no', 'area_name', 'city_no', 'city_name', 'city_id', 'city', 'district_id', 'district'], encoding='utf-8-sig') def data_import(): # 定义 PowerShell 脚本的路径 script_path = r"../../copy.ps1" # 目标表和文件信息 table = "house.site_month" # 数据库目标表名 # 表字段列名,用于指定导入数据的列顺序 columns = "year_month,site_id,first_unit,second_unit,third_unit,site_num,site_name,address,city_level,city_region,area_sector,has_land,area_no,area_name,city_no,city_name,city_id,city,district_id,district" # 构造执行 PowerShell 脚本的命令 command = f"powershell -File {script_path} -db_host {db_host} -db_port {db_port} -db_username {db_username} -db_password {db_password} -dbname {dbname} -table {table} -filename {output_path} -columns {columns}" # 打印生成的命令,方便调试和日志记录 logger.info("command: {}", command) # 使用 subprocess 模块运行 PowerShell 命令,并捕获输出 completed_process = subprocess.run( command, # 执行的命令 check=False, # 如果命令执行失败,不抛出异常 text=True, # 将输出作为字符串处理 capture_output=True, # 捕获标准输出和标准错误 ) # 打印命令执行的结果,包括返回码、标准输出和标准错误 logger.info("导入结果:\n{}\n{}\n{}", completed_process.returncode, completed_process.stdout, completed_process.stderr) # 定义正则表达式,用于匹配标准输出中的 COPY 结果 p = re.compile(r"^(COPY) (\d+)$") count = None # 初始化计数变量 matcher = p.match(completed_process.stdout) # 匹配标准输出中的 COPY 结果 if matcher: count = int(matcher.group(2)) # 提取导入的数据行数 # 如果没有成功提取到导入数据的行数,抛出运行时异常 if count is None: raise RuntimeError("导入数据失败") def upload_file(): remote_path = f'{remote_dir_path}{year_month}.xlsx' # 定义远程主机的目标文件路径 # 使用paramiko.SSHClient创建一个SSH客户端对象,并通过with语句管理其上下文 with paramiko.SSHClient() as ssh: # 设置自动添加主机密钥策略,避免因未知主机密钥导致连接失败 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接到远程主机,传入主机地址、端口、用户名和密码 ssh.connect(ssh_hostname, port=ssh_port, username=ssh_username, password=ssh_password) # 执行远程命令,创建远程目录(如果不存在) ssh.exec_command(f'mkdir -p {remote_dir_path}') # 打开SFTP会话,用于文件传输,并通过with语句管理其上下文 with ssh.open_sftp() as sftp: # 记录日志,提示即将上传的本地文件和远程目标路径 logger.info("upload {} to {}", input_path, remote_path) # 使用SFTP的put方法将本地文件上传到远程主机 sftp.put(input_path, remote_path) # 记录日志,提示文件已成功上传 logger.info("uploaded {}", input_path) data_process() data_import() upload_file()